41 research outputs found

    Analysis of Push-type Epidemic Data Dissemination in Fully Connected Networks

    Get PDF
    Consider a fully connected network of nodes, some of which have a piece of data to be disseminated to the whole network. We analyze the following push-type epidemic algorithm: in each push round, every node that has the data, i.e., every infected node, randomly chooses c∈Z+c \in {\mathbb Z}_+ other nodes in the network and transmits, i.e., pushes, the data to them. We write this round as a random walk whose each step corresponds to a random selection of one of the infected nodes; this gives recursive formulas for the distribution and the moments of the number of newly infected nodes in a push round. We use the formula for the distribution to compute the expected number of rounds so that a given percentage of the network is infected and continue a numerical comparison of the push algorithm and the pull algorithm (where the susceptible nodes randomly choose peers) initiated in an earlier work. We then derive the fluid and diffusion limits of the random walk as the network size goes to ∞\infty and deduce a number of properties of the push algorithm: 1) the number of newly infected nodes in a push round, and the number of random selections needed so that a given percent of the network is infected, are both asymptotically normal 2) for large networks, starting with a nonzero proportion of infected nodes, a pull round infects slightly more nodes on average 3) the number of rounds until a given proportion λ\lambda of the network is infected converges to a constant for almost all λ∈(0,1)\lambda \in (0,1). Numerical examples for theoretical results are provided.Comment: 28 pages, 5 figure

    Stationary analysis of a single queue with remaining service time dependent arrivals

    Get PDF
    We study a generalization of the M/G/1M/G/1 system (denoted by rM/G/1rM/G/1) with independent and identically distributed (iid) service times and with an arrival process whose arrival rate λ0f(r)\lambda_0f(r) depends on the remaining service time rr of the current customer being served. We derive a natural stability condition and provide a stationary analysis under it both at service completion times (of the queue length process) and in continuous time (of the queue length and the residual service time). In particular, we show that the stationary measure of queue length at service completion times is equal to that of a corresponding M/G/1M/G/1 system. For f>0f > 0 we show that the continuous time stationary measure of the rM/G/1rM/G/1 system is linked to the M/G/1M/G/1 system via a time change. As opposed to the M/G/1M/G/1 queue, the stationary measure of queue length of the rM/G/1rM/G/1 system at service completions differs from its marginal distribution under the continuous time stationary measure. Thus, in general, arrivals of the rM/G/1rM/G/1 system do not see time averages. We derive formulas for the average queue length, probability of an empty system and average waiting time under the continuous time stationary measure. We provide examples showing the effect of changing the reshaping function on the average waiting time.Comment: 31 pages, 3 Figure

    Asymptotically optimal importance sampling for Jackson networks with a tree topology

    Get PDF
    This note describes an importance sampling (IS) algorithm to estimate buffer overflows of stable Jackson networks with a tree topology. Three new measures of service capacity and traffic in Jackson networks are introduced and the algorithm is defined in their terms. These measures are effective service rate, effective utilization and effective service-to-arrival ratio of a node. They depend on the nonempty/empty states of the queues of the network. For a node with a nonempty queue, the effective service rate equals the node's nominal service rate. For a node i with an empty queue, it is either a weighted sum of the effective service rates of the nodes receiving traffic directly from node i, or the nominal service rate, whichever smaller. The effective utilization is the ratio of arrival rate to the effective service rate and the effective service-to-arrival ratio is its reciprocal. The rare overflow event of interest is the following: given that initially the network is empty, the system experiences a buffer overflow before returning to the empty state. Two types of buffer structures are considered: (1) a single system-wide buffer shared by all nodes, and (2) each node has its own fixed size buffer. The constructed IS algorithm is asymptotically optimal, i. e., the variance of the associated estimator decays exponentially in the buffer size at the maximum possible rate. This is proved using methods from (Dupuis et al. in Ann. Appl. Probab. 17(4): 1306-1346, 2007), which are based on a limit Hamilton-Jacobi-Bellman equation and its boundary conditions and their smooth subsolutions. Numerical examples involving networks with as many as eight nodes are provided

    Dynamic importance sampling for queueing networks

    Full text link
    Importance sampling is a technique that is commonly used to speed up Monte Carlo simulation of rare events. However, little is known regarding the design of efficient importance sampling algorithms in the context of queueing networks. The standard approach, which simulates the system using an a priori fixed change of measure suggested by large deviation analysis, has been shown to fail in even the simplest network setting (e.g., a two-node tandem network). Exploiting connections between importance sampling, differential games, and classical subsolutions of the corresponding Isaacs equation, we show how to design and analyze simple and efficient dynamic importance sampling schemes for general classes of networks. The models used to illustrate the approach include dd-node tandem Jackson networks and a two-node network with feedback, and the rare events studied are those of large queueing backlogs, including total population overflow and the overflow of individual buffers.Comment: Published in at http://dx.doi.org/10.1214/105051607000000122 the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Joint Hitting-Time Densities for Finite State Markov Processes

    Full text link
    For a finite state Markov process and a finite collection {Γk,k∈K}\{ \Gamma_k, k \in K \} of subsets of its state space, let τk\tau_k be the first time the process visits the set Γk\Gamma_k. We derive explicit/recursive formulas for the joint density and tail probabilities of the stopping times {τk,k∈K}\{ \tau_k, k \in K\}. The formulas are natural generalizations of those associated with the jump times of a simple Poisson process. We give a numerical example and indicate the relevance of our results to credit risk modeling.Comment: 25 pages, 3 figure
    corecore